
z/OS

Text Search: Installation and
Administration
for the Text Search Engine
Version 1.2

SH12-6716-01

���

z/OS

Text Search: Installation and
Administration
for the Text Search Engine
Version 1.2

SH12-6716-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 79.

Second Edition, October 2001

This edition applies to Version 1.2 of z/OS (5694-A01) and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Who should read this book v
Conventions used in this book v
The Text Search Library v

Chapter 1. Introduction 1
The Text Search Engine environment 1
Client/server communication 2
Text Search Engine concepts 3

Chapter 2. Installing and customizing
the Text Search Engine 5
Getting started. 5
Installing the Text Search Engine. 6

Moving z/OS Text Search to another directory . . 7
Copying z/OS Text Search. 8

Customizing the installation 9
Finalizing the installation 10

Migrating from releases of OS/390 Text Search . . 11
Migrating from OS/390 NetQuestion Version 1.x . . 11

Chapter 3. Starting and stopping a
search server 13

Chapter 4. Planning your document
indexes 15
Why documents need to be indexed 15
Which types of documents and library systems are
supported 15
Using unsupported document formats 16
Deciding which type of document index to use . . 17

Linguistic index 17
Precise index 18
Normalized precise index. 18
Ngram index 18

Using multiple indexes 19
Enabling section support 19

Flat files and HTML documents 20
XML documents 21

Performance considerations 22
Space requirements for indexes 22
Time required to index documents. 23
Retrieval time for a search 24
Merging the secondary index with the primary
index 24

Chapter 5. Building and maintaining
indexes 25
Building a new index 25

Creating the document list 26
Creating an index 26
Defining the rules for the index 26
Populating the index 26

Refreshing an index 26
Reorganizing indexes 27
Querying the status of an index 27
Backing up and restoring index files 27
Moving an index to another location 28

Chapter 6. Administration commands 29
Index administration 29

IMOCLRIX - clear index 30
IMOCRIX - create index 31
IMOCTRIX - control index 33
IMODELIX - delete index. 34
IMOLSTIX - list indexes 35
IMOMSGIX - display indexing messages . . . 36
IMOREOIX - reorganize index 37
IMORULIX - maintain indexing rules. 38
IMOSTAIX - display index status 40
IMOSTFIX - display status of index functions . . 41
IMOUPDIX - update index 42

Document administration. 42
IMOQUEUE - queue documents 43
IMOSRCH - search for documents 45

Document model administration 47
IMOCRDM - create document model 48
IMODELDM - delete document model 50
IMOGETDM - display a document model . . . 51
IMOLSTDM - list document models 52
IMOMODIX - set default document model . . . 53

Thesaurus administration. 53
IMOTHESC - compile a thesaurus definition file 55
IMOTHESN - compile an NGRAM thesaurus
definition file 57

Server administration 57
IMOADMSV - update server settings 59
IMOCFGSV - update server configuration . . . 61
IMOCRINS - create server instance 63
IMOSS - start/stop server instance 64

Client administration 64
IMOADMCL - update client configuration . . . 65
IMOCFGCL - update client profile. 67
IMOCRCL - create client profile 69

Appendix A. Configuration files 71
Client configuration file 71
Server configuration file 72

Appendix B. Dictionary files 75

Appendix C. Handling errors 77
IMOTRACE - enable trace facility 78

Appendix D. Notices 79
Trademarks 80

© Copyright IBM Corp. 1998, 2001 iii

Index 81

iv z/OS Text Search: Installing the Text Search Engine

About this book

The Text Search Engine is part of the IBM z/OS Text Search element. The Program
Directory for z/OS Version 1.2, GI10-4001, describes the SMP/E installation. This
book describes how to complete the final installation and customization of the Text
Search Engine. It also lists the commands you can use for index, document, and
thesaurus administration.

Who should read this book
Read this book if you are responsible for setting up and managing the Text Search
Engine client/server environment. This book is also for people responsible for the
creation and administration of indexes and the administration of documents.

Conventions used in this book
The conventions used in this book are:
v Parameters between [and] are optional, other parameters are required.
v Characters following the - (minus) sign are control characters.
v Parameters between < and > must be replaced by their actual value.
v Parameters without any additional notation are keywords and must be specified

as shown.
v z/OS NetQuestion Version 1.x refers to the following FMIDs: HIMN110,

HIMN120, and HIMN130.

The Text Search Library
The following books are available for z/OS Text Search:
v z/OS Text Search: Installation and Administration for the Text Search Engine,

SH12-6716
v z/OS Text Search: Programming the Text Search Engine, SH12-6717
v z/OS Text Search: NetQuestion Solution, SH12-6718

© Copyright IBM Corp. 1998, 2001 v

vi z/OS Text Search: Installing the Text Search Engine

Chapter 1. Introduction

This chapter introduces you to the Text Search Engine environment and to some of
the concepts that are applicable to the Text Search Engine.

The Text Search Engine environment
The Text Search Engine consists of a server component, a client component, and
resources, for example, dictionaries and thesaurus files. You can install these
components in the following combinations on any machine:
v The client component and resources
v The server component and resources
v Both the client and server components and resources

Figure 1 shows how you might set up your Text Search Engine environment:

Client The client manages access to the Text Search Engine server. For
example, it is the interface for building and maintaining indexes,
and it provides access to search and result-list handling. It contains
a dynamically loadable module for programming text applications
and a command-line interface for issuing administration
commands that access the API functions. Configuration files on the
client define where resources are located, and the communication
method used for connecting to the Text Search Engine server. A
client can connect to different servers located on different
machines.

Server A Text Search Engine server is known as a search server instance.
Several server instances can be configured on the same machine. A

Figure 1. Example of a Text Search Engine environment

© Copyright IBM Corp. 1998, 2001 1

set of indexes is owned by a server instance. This means that
server instances are independent of one another and they can run
in parallel. Each server instance:
v Maintains one set of indexes
v Allows for up to 100 parallel processes for client sessions
v Uses one set of configuration files defining resources and the

default behavior of the server instance

A server is a daemon process that must be running to be connected
to by a client.

Resources Resources include dictionaries, thesaurus files, stop-word lists, and
abbreviation files.

Dictionaries support the linguistic processing of documents during
indexing and retrieval. The U.S. English dictionary is always
installed on every machine. When you install a dictionary, the stop
words for that language are also installed.

Thesaurus files can be used during a search for expanding query
terms. Two sample thesaurus files are available; one for ngram
indexes (imonthes.*) and one for all the other index types
(imothes.*).

For a complete list of the resource file names and code pages for
each of the supported languages, see “Appendix B. Dictionary
files” on page 75.

Client/server communication
The Text Search Engine supports the following communication methods for a
client/server environment:

TCP/IP
TCP/IP allows clients on the same or different machines to access the Text
Search Engine server. The server starts a daemon process that controls
access to the index from each of the clients. It also starts communication
processes to accept client requests.

If you have a lot of clients running in parallel and you receive an error
message that the server is busy, you should increase the number of client
processes running in parallel. To do this, use the imcfgsv command to
increase the number of running tasks.

Local Local communication allows clients to be connected to a server only if they
are on the same machine. The server starts a daemon process that controls
access to the index only. A client can connect to only one server at any one
time (in one process).

Note
Local communication is not thread reentrant. Before you can use local
communication, ensure that the applications using this mode serialize
the client requests within the application.

2 z/OS Text Search: Installing the Text Search Engine

Text Search Engine concepts
The following are general concepts that apply throughout the Text Search Engine
components. These concepts are especially important in a heterogeneous
environment with, for example, clients on workstation platforms and the server on
z/OS.

Configuration files
There are several files available for configuring the Text Search Engine.
These are in a flat-file format and can be changed using any editor
available on your system.

Character data
Whenever character data is passed in interfaces, especially across systems
or environments, character encoding problems might arise. To overcome
this problem, the Text Search Engine has rules for input data.

There are rules for:
v Text Search Engine names (such as index names or server names)
v External names (such as document names)
v Document identifiers (and document group identifiers)
v Document text
v Search terms

These rules are described in z/OS Text Search: Programming the Text Search
Engine.

Chapter 1. Introduction 3

4 z/OS Text Search: Installing the Text Search Engine

Chapter 2. Installing and customizing the Text Search Engine

The IBM Text Search Engine and the NetQuestion Solution are shipped together as
the z/OS Text Search element, HIMN230. The Program Directory for z/OS Version
1.1 describes the SMP/E installation of both components. This chapter describes
the final installation and customization of the Text Search Engine in the z/OS
UNIX (OpenEdition®) after the SMP/E installation.

Check the README file before carrying out the steps described in this chapter. It
might contain important information about late changes to the installation and
configuration process. If you used the default directories during SMP/E
installation, the README file is in /usr/lpp/TextTools/readme.

Getting started
The z/OS Text Search load library hlq1.SIMOMOD1 can be accessed in one of the
following ways from the z/OS UNIX® environment:
v By adding hlq.SIMOMOD1 to the PARMLIB member (PROGxx) or (LNKLSTxx).
v By adding hlq.SIMOMOD1 to the STEPLIB environment variable

For performance reasons, it is recommended that you add hlq.SIMOMOD1 to one
of the PARMLIB members. This also simplifies the customization steps described in
this chapter.

Before you start the final installation, ensure that:
v For administration, you have an administration group and a user ID set up.

These IDs are usually created during the installation of the IBM HTTP Server
and, by default, they are WEBADM and IMWEB respectively.

v The PARMLIB(BPXPRMxx) member includes the following:
IPCSEMNSEMS(50)
IPCSHMMPAGES(2048)

v Your PATH environment variable contains either ″.″ or ″./″. Use the command
echo $PATH to check the setting. To change the PATH setting to include the
period:
1. Enter

export PATH=$PATH:.

2. Update the system profile (/etc/profile) or your user profile
(/u/<user>.profile)

v If you use PROGxx or LNKLSTxx, the corresponding PARMLIB member
contains the entry hlq.SIMOMOD1.
The hlq.SIMOMOD1 data set must also be APF-authorized. This is achieved if
the IEASYSxx member of the PARMLIB defaults to LINKAUTH=LNKLST.

v If you use the STEPLIB environment variable:
– You have either RACF™ READ access for the z/OS load library

hlq.SIMOMOD1 or RACF EXEC access and there is a PROGRAM profile for
all members in hlq.SIMOMOD1.

– The PARMLIB(BPXPRMxx) member contains an entry for the sanction list, for
example, STEPLIBLIST(’/system/steplib’).

1. High-level qualifier

© Copyright IBM Corp. 1998, 2001 5

– The sanction list, for example, the HFS file ’/system/steplib’ contains the
entry hlq.SIMOMOD1.

v If you are migrating from any release of OS/390 Version 2 to Version 2.10, you
do not have any data files in directories belonging to NetQuestion 1.x. These
directories are deleted when you install z/OS Text Search. If you have stored the
document lists for indexing documents in these directories, save them to another
directory; you can use them for migrating your indexes. For information on
migrating from OS/390 NetQuestion Version 1.x, see “Migrating from OS/390
NetQuestion Version 1.x” on page 11.

Installing the Text Search Engine
The z/OS system provides menu screens for finalizing the installation. Online help
is available for the installation. The log file, imoinst.log, tracks the installation
events.
1. Log on with a user ID that has superuser privilege.

Tip
Do not use the su command to become a superuser because the
permission rights might not be sufficient to complete the installation
successfully.

2. Change the current working directory to the directory that contains the REXX
procedures and z/OS UNIX shell scripts by using the command:
cd /usr/lpp/TextTools/install

Ensure that you have write access to /usr/lpp/TextTools/*.
3. From an z/OS UNIX command line, enter:

imoinst

Tip
If you install the Text Search Engine on a driving system and move it later
to the target system, you must run imoinst from the driving system

The Install z/OS Text Search Engine panel is displayed.

REXX Procedure imoinst - Install z/OS Text Search Engine

Type in selection number to execute or type in ?n (n = selection number)
to get help and press ENTER.

0. End
1. Basic installation
2. Optional installation steps
3. PTF installation and information

Please enter your selection:
= = = >

4. Select 1. Basic Installation.
The Install z/OS Text Search Engine panel is displayed:

6 z/OS Text Search: Installing the Text Search Engine

REXX Procedure imoinst - Install and Customize IBM Text Search Engine

Type in selection number to execute or type in ?n (n = selection number)
to get help and press ENTER.

0. End
1. Customize installation and application parameters - file imoparm
2. Display the list of all parameters using 'pg imoparm'
3. Process final installation steps
4. Display final installation log file using 'pg imoisfin.log'
5. Set up NetQuestion Solution using 'inqsetup'
6. Display activity logging file using 'pg imoinst.log'
7. Enter your own shell command

Please enter your selection:
===>

5. Select 1. Customize installation and application parameters.
The default settings for the installation parameters are:
IMODIRPATH=/usr/lpp
IMOINSTDIR=TextTools
IMOLOADLIB=IMO.SIMOMOD1
IMOADMGRP=IMWEB
IMOADMUSER=WEBADM
LANG=C
IMOINSTANCE=inqsrch
IMOSEARCHSERVICE=SERVER
INQLANGNO=1

To check the current settings of these parameters, select 2. Display the list of
all parameters. If you do not want to use a specific user ID or group for the
customization, leave the parameters IMOADMUSER and IMOADMGRP blank.

If you are working with a STEPLIB environment variable, ensure that the
IMOLOADLIB parameter contains the full data set name of the z/OS Text
Search load library, before you do any of the following steps.

Tip
To change installation parameters at a later date, use menu item 1 to edit
the imoparm file. Whenever you change any of these parameters, you
must repeat menu item 3 to update your installation.

6. 3. Process final installation steps.
To check the results of the final installation, select 4. Display final installation
log file.

All other steps are optional.

Moving z/OS Text Search to another directory
If you want to move z/OS Text Search to another directory, you must do some
additional installation steps after the basic installation. This applies, for example, if
you are working with driving and target systems.

Chapter 2. Installing and customizing the Text Search Engine 7

Tip
You cannot manually copy a customized installation from one directory to
another. The customized settings are lost if you do this.

To move z/OS Text Search to another directory:
1. From an z/OS UNIX command line, enter:

imoinst

2. Select 2. Optional installation steps.
The Optional Installation Steps panel is displayed.

REXX Procedure imoinst - Optional Installation Steps

Type in selection number to execute or type in ?n (n = selection number)
to get help and press ENTER.

NOTE:
Only Step 1 is required if you want to run/remount the installation in a
directory other than the current directory.
For Step 2, you must first run Step 1 if you want to clone this installation
into other directories.

0. End
1. Prepare this customization to run/remount in other directories
2. Copy a clone of this installation into other directories
3. Display logging file for items above

Please enter your selection:
===>

3. Select 1.
The current installation settings are shown.

4. Edit the settings to point to the new directories and when prompted to do so,
enter Y.
When this step has finished, the installation runs only from the new directory
and cannot be run from the original installation directory.

Tip
To enable z/OS Text Search to run from the original installation
directories, for example, to install a PTF, edit the settings again to point to
the original installation directories.

Copying z/OS Text Search
You can copy your z/OS Text Search installation, for example, if you want to use
z/OS Text Search on a new production system, or you are working with driving
and target systems. If you copy your installation, you must do some additional
installation steps after the basic installation.

Tip
You cannot manually copy a customized installation from one directory to
another. The customized settings are lost if you do this.

8 z/OS Text Search: Installing the Text Search Engine

To copy your z/OS Text Search installation:
1. From an z/OS UNIX command line, enter:

imoinst

2. Select 2. Optional installation steps.
The Optional Installation Steps panel is displayed.

REXX Procedure imoinst - Optional Installation Steps

Type in selection number to execute or type in ?n (n = selection number)
to get help and press ENTER.

NOTE:
Only Step 1 is required if you want to run/remount the installation in a
directory other than the current directory.
For Step 2, you must first run Step 1 if you want to clone this installation
into other directories.

0. End
1. Prepare this customization to run/remount in other directories
2. Copy a clone of this installation into other directories
3. Display logging file for items above

Please enter your selection:
===>

3. To specify the location of the copied installation, select 1.
The current installation settings are shown.

4. Edit the settings to point to the new directories and when prompted to do so,
enter Y.

5. To copy the installation, for example, to put a test installation into production,
select 2.
The updated settings from step 1 are shown.

6. Check that the settings for the new installation are correct. If you want to copy
your NetQuestion Solution installation, update the settings for the Web server’s
server root directory with the new directory information.

7. Close the editor and when prompted to do so, enter Y and wait until this step
has finished.
You can now run both the original installation and the copy of the installation.

Customizing the installation
Before you do any of the following steps, ensure that:
v If you are working with PARMLIB members, either (PROGxx) or (LNKLSTxx)

contains an entry for hlq.SIMOMOD1.
v If you are working with a STEPLIB environment variable, the IMOLOADLIB

parameter contains the full data set name of the z/OS Text Search load library.

To customize the Text Search Engine installation:
1. Log on with a user ID that has superuser privilege.
2. Change the current working directory to the directory that contains the REXX

procedures and z/OS UNIX shell scripts by using the command:
cd <install path>

3. From an z/OS UNIX command line, enter:
imocust

Chapter 2. Installing and customizing the Text Search Engine 9

Tip
If you install the Text Search Engine and move it later to the target
system, you must execute imocust on the target system.

The Customize z/OS Text Search Engine panel is displayed:

REXX Procedure imocust - Customize z/OS Text Search Engine

Type in selection number to execute or type in ?n (n = selection number)
to get help and press ENTER.

0. End
1. Install Customization Data into the etc directory
2. Check/adapt environment settings - file imoexport
3. Process installation verification procedure
4. Configure local instance and search service using default names
5. Erase NetQuestion Version 1.x data files
6. Display activity logging file using 'pg imocust.log'
7. Enter your own shell command

Please enter your selection:
===>

4. Select 1. Install Customization Data into the etc directory. The default setting
for the TextTools Customization directory is IMOETCPATH=/etc/TextTools. Close
the editor, and when prompted, enter Y.

5. Select 2. Check and adapt environment settings file imoexport.
If you are working with a STEPLIB environment variable, ensure that the
IMOLOADLIB parameter contains the full data set name of the z/OS Text
Search load library, before you do any of the following steps.

6. Run the installation verification test by selecting 3. Process installation
verification procedure.

Select 4 to create and configure a local instance and client. If you already have
z/OS Text Search installed, you can use your existing instance and client. All other
steps are optional.

Continue with the steps described in “Finalizing the installation”.

Finalizing the installation
When your installation is complete, add the file imoexport from the TextTools
customization directory, /etc/TextTools/imoexport if you use the default setting,
to the user profiles of those users who use the Text Search Engine administration
commands. You can check the installation, by using the following commands to
start, check, and stop the search service, inqsrch:
. imoexport
imoss -start inqsrch
imoss -status inqsrch
imoss -stop inqsrch

10 z/OS Text Search: Installing the Text Search Engine

Migrating from releases of OS/390 Text Search
During SMP/E installation, ensure that you specify the existing directories for
OS/390 Text Search. This ensures that the installation parameters are kept and that
the existing search instances and services with their associated indexes are also
kept.
v Migrating from OS/390 Version 2.8 or later

The search instances and services with their associated indexes are all kept. No
migration is required.

Tip
When you call imocust to customize the Text Search Engine, do not carry
out step 4. Configure local instance and search service using default names
because this will reconfigure your existing installation.

v Migrating from OS/390 Version 2.7 or earlier
The search instances and services with their associated indexes are all kept. No
migration is required. However, if you still have OS/390 NetQuestion Version
1.x installed, you should run step 6 from the imocust menu. This deletes all the
files associated with NetQuestion, including the data and work directories.

Migrating from OS/390 NetQuestion Version 1.x
The following describes how to migrate your OS/390 NetQuestion 1.x indexes,
applications, and shell scripts to z/OS Text Search:
v Indexes

Indexes you created using the OS/390 NetQuestion Version 1.x have a different
format to those created by z/OS Text Search and therefore they cannot be
re-used. You must reindex your documents using z/OS Text Search. If you have
copies of the document lists that you used to index the documents with
NetQuestion, you can use these when reindexing your documents.

v Applications
The z/OS Text Search APIs differ slightly from the OS/390 NetQuestion APIs. If
you have written applications using the OS/390 NetQuestion APIs, you must
rebuild your applications using the z/OS Text Search APIs. The z/OS Text Search:
NetQuestion Solution contains information to help you convert your applications.
If you used the default installation directories, the API files are in the directory
TextTools/TextSearch/samples.

v Shell scripts
As with NetQuestion, you can invoke the adminstration functions directly from
the command line. However, the commands provided by z/OS Text Search
differ from those of OS/390 NetQuestion. If you have built shell scripts using
the NetQuestion command-line calls, wrapper code is provided so that you can
continue to use the shell scripts with z/OS Text Search. If you used the default
installation directories, the wrapper code is in the directory
TextTools/TextSearch/samples/comwrap. The z/OS Text Search: NetQuestion Solution
contains information on the differences in the command-line calls.
If you have shell scripts that check return codes, you might need to modify
these when you move to z/OS Text Search because some of the return codes
differ from those of z/OS NetQuestion. The file ...include/imoapic.h lists the return
codes for z/OS Text Search.

Chapter 2. Installing and customizing the Text Search Engine 11

12 z/OS Text Search: Installing the Text Search Engine

Chapter 3. Starting and stopping a search server

A Text Search Engine server is known as a search server instance. This chapter
describes how to start and stop a server instance on the supported platforms.

To start, stop, or query the status of a server instance:
1. Log on to the Text Search Engine server. Ensure that your user ID belongs to

the administration group.
2. Ensure that you have added the file imoexport to your user profile. If you have

not, change to the .../bin subdirectory, and use the . imoexport (period blank
imoexport) command to set your environment.

3. You can start, stop, or query the status of a server instance from a command
prompt using the imoss command:
v To start a server instance, enter:

imoss -start <ServerInstanceName>

v To stop a server instance, enter:
imoss -stop <ServerInstanceName>

v To query the status of a server instance, enter:
imoss -status <ServerInstanceName>

During final installation, the server instance inqsrch is created. Use this as the
ServerInstanceName.

There can be serveral server instances running on the same machine. You can start,
stop, or query any one of these server instances independently of the others.

© Copyright IBM Corp. 1998, 2001 13

14 z/OS Text Search: Installing the Text Search Engine

Chapter 4. Planning your document indexes

This chapter helps you to plan before you index documents for the first time. It
explains:
v Why documents need to be indexed
v Which types of documents can be indexed, and which document libraries and

file systems you can use
v How to decide which type of index to use
v How the index type and configuration settings affect performance
v The use of multiple indexes
v How to enable section support

Why documents need to be indexed
A fast information retrieval system does not sequentially scan through documents;
this would take too long. Instead, it operates on a previously built document
index. You can think of a document index as consisting of terms extracted from the
documents, stored together with the document names.

The retrieval system searches through the index for the terms requested, and finds
the names of the documents containing those terms.

A document index contains only relevant information; insignificant information
(stop words), such as conjunctions and prepositions, are not indexed. The Text
Search Engine uses a list of these stop words to prevent them from being indexed.

Which types of documents and library systems are supported
You can index different document types, including HTML documents, XML
documents, and flat files. For a complete list of the document formats that can be
indexed, refer to the IMOLSDEF.H header file in the .../include subdirectory.

You can index and search for documents in any file system supported by the
operating system where the Text Search Engine is installed. For each library
system, a separate document index is required because there can be only one
Library Service per index.

Search service

Indexing

Document indexThe price of your holiday
is subject to increases due
to government action, fuel
surcharges by ferry and air-
craft operators and due to
other increases by the
companies
providing
ferries.

Motorrail, flights, vehicle
hire, hotel or other acc-
ommodation, etc.

Figure 2. Rapid retrieval by indexing only meaningful terms

© Copyright IBM Corp. 1998, 2001 15

The documents to be indexed can be located anywhere. However, the library
system must ensure unique access to the documents from both the client and the
server. This is done using the Library Services interface.

The Text Search Engine delivers Library Services for file-system access:
v On Windows NT when the clients and server are not installed on the same

machine, schedule the documents for indexing using UNC names.
v On UNIX platforms, the documents must be located on the server or accessible

via NFS/AFS mount points. If the code pages on the clients and the server are
not the same, for example, ASCII on the clients and EBCDIC on the server, you
must write your own set of Library Services routines to take account of this. One
approach to writing the Library Services is to use the Distributed Computing
Environment’s (DCE) Distributed File Service. This can accommodate both the
document access and the differences in the code pages.

For further information on the Library Services supplied with the Text Search
Engine, see z/OS Text Search: Programming the Text Search Engine.

Using unsupported document formats
If you have documents in a format not supported by the Text Search Engine, you
must write a user exit program or command file that converts the documents into
another document format. The user exit must be registered in both the server
configuration file (IMOSRV.INI) and the client configuration file (IMOCL.INI).
Update the USEREXIT option in the [DOCUMENTFORMAT] section with the
name of the user exit. For information on the configuration files, see “Appendix A.
Configuration files” on page 71.

To call the user exit, use the following syntax:
<name_of_executable> -sourcefile <sourcefilename>

-targetfile <targetfilename>
-sourceccsid <sourceccsid>
-targetccsid <targetccsid>
-sourceformat <sourceformat>
-targetformat <targetformat>

sourcefilename
The file to be converted by the user exit program. The file name is
fully-qualified and is located in the working directory specified either in
the client profile or the server instance.

targetfilename
The file containing the output of the user exit. This file is then used for
processing by the Text Search Engine. The file name is fully-qualified and
points to the working directory specified either in the client profile or the
server instance. The entries in the client profile are used for the API call
EhwGetMatches and those in the server instance for the API call
EhwUpdateIndex.

sourceccsid
The code page of the source file. This is the default code page you
specified using the imorulix command.

targetccsid
The code page expected by the Text Search Engine. For workstation
platforms the code page is 850 and for z/OS it is 500.

16 z/OS Text Search: Installing the Text Search Engine

sourceformat
The format of the source file. This is the default format specified using the
imorulix command.

targetformat
The format of the file expected by the Text Search Engine. Currently, only
the flat-file format (TDS) or, for section-enabled indexes, ASCIISECTION
are supported.

The user exit is called for all document formats above the value of
EHW_USER_FORMATS defined in IMOLSDEF.H. To change this behavior, change
the options in the [DOCUMENTFORMAT] section in the configuration files.

The user exit must be able to return the following values:

0 Format conversion was successful.

>0 Format conversion was not successful. During indexing, the error messages
are written to the document error table. Use the imomsgix command to
display the error messages.

Deciding which type of document index to use
You can choose one of these index types:
v Linguistic index
v Precise index
v Normalized precise index
v Ngram index

This section summarizes the index types.

Linguistic index
If you choose to create a linguistic index, then, during indexing, linguistic
processing is applied while analyzing the documents’ text.

For a query, the Text Search Engine then applies the same linguistic processing to
the search terms before searching in the document index. The result is that any
form of a search term matches any other form occurring in one of the indexed
documents.

For example, the search term mouse matches the document terms mouse, mice, MICE
(capital letters), and so on. Similarly, the search term Mice matches the same
document terms.

The advantage of this type of index is that more documents are likely to be found
(increased “recall”).

This index type requires the least amount of disk space. However, indexing and
searching may take longer than for the precise index.

The linguistic processing used to index documents for a linguistic index are:
v Word and sentence separation.
v Changing terms to a standard form, in which there are no capital letters, and

accented letters, such as ü are changed to a form without accents
(normalization). For example, the German term Grüße is indexed as gruesse.

Chapter 4. Planning your document indexes 17

v Reducing terms to their base form (lemmatization). For example, bought is
indexed as buy, mice as mouse.

v Word decomposition, where compound words, such as the German
Wetterbericht (weather report) are indexed not only as wetterbericht, but also
as wetter and bericht.

v Stop-word filtering in which only the relevant terms are extracted for indexing. A
report about all animals is indexed as report and animal.

Even word fragments (words masked with global characters) are compared to the
base forms in the index. For example, a document containing the text I swum being
searched for all words beginning with swu using the word fragment swu* is not
found, because the index contains only the term swim. So the query should be swi*
instead.

Precise index
In a precise index, linguistic processing is done only to determine word and
sentence boundaries. The terms in the documents are indexed in exactly the same
form as they occur in the document.

For example, the search term mouse matches only the document term mouse and
not, for example, MICE or Mouse.

The advantage of this type of index is that the search is more precise (reduced
recall); also indexing and retrieval is faster. Because each different form and
spelling of every term is indexed, more disk space is needed.

The linguistic processes used to index documents for a precise index are:
v Word and sentence separation
v Sentence-begin processing
v Stop-word filtering

In a query, the same processing is applied to the query terms, which are then
compared with the terms found in the index.

This means that only the same form or inflection of a search term is found.
Generally, the search in a precise index is case sensitive.

Normalized precise index
The normalized precise index differs from the precise index:
v It is case insensitive (all words are converted to lowercase except words that are

written in all uppercase).
v Words in all uppercase are not subject to stop-word filtering (the word UK, for

example, is indexed).
v English language search terms can be expanded to include lemma forms using a

heuristic algorithm (looking for house looks also for houses).

Ngram index
Indexing and search in this index type is based on n-grams, that is, limited-length
character sequences. There is no linguistic processing involved at all. This
technology enables high-performance indexing, and search using both exact and
fuzzy matching. This index not only supports English, but it is also optimized for
double-byte character set languages: Japanese, Simplified and Traditional Chinese,

18 z/OS Text Search: Installing the Text Search Engine

and Hanguel (Korean). You can create both case-insensitive ngram indexes
(NGRAM) and case-sensitive ngram indexes (NGRAMCS).

Using multiple indexes
Using multiple indexes can bring many benefits:
v Searching in several library systems

An index is restricted to documents belonging to a particular library system,
such as the UNIX file system. If you intend to search in documents that are
stored in more than one library system, then you must create at least one index
for each library system.

v Searching in a particular subject area
You can group your documents so that each subject area is indexed separately.
By searching in one index, you automatically restrict the search to documents in
a particular subject area. You can widen the search to documents in other subject
areas by doing a cross-index search.

v Speeding up indexing
As an index grows larger, it takes longer to index documents and to merge the
index. By creating an additional index for new documents, the maintenance time
for this index, because it is still small, is relatively short. This procedure is
particularly suitable for indexing documents whose content does not change.
The indexes could be assigned to documents according to the documents’
creation date, such as one index for 1998 documents, another for 1999
documents, and so on.

Enabling section support
Section support allows you to index and search specific sections in a structured
document, for example, in the title, author, or description. The documents can be
in HTML or XML format, or flat-file documents with HTML-like tags. You define
the markup tags and their corresponding section names in a document model. The
document model defines which sections in the documents are indexed and
therefore available for searching. The section names are descriptive names used in
queries against that section.

A document models file lists all the defined document models for the server instance.
When a server instance is created, a sample document models file,
IMOMODEL.INI, is created automatically in the server instance subdirectory. The
file is in EBCDIC code page. Use the imocrdm command to create document models
for the server instance. These models are appended to IMOMODEL.INI.

When you create an index, you can specify a list of models that are to be used by
the index for section support:
imocrix -s SERVER -x TESTIX -t LING -sections "sample, PLAY" -p /indexes/TESTIX

The document model information is copied to the index directory. If you change
the document models file for the server instance after you create the index, it does
not affect the section support for the created index.

A search on an index with section support, for example, to search for ’McDaniel’ in
the section ’Author’, might look as follows. The section, in this case ’Author’, is
always prefixed by the model name.
imosrch -s SERVER -x TESTIX -section sample/Author -term McDaniel

Chapter 4. Planning your document indexes 19

For information on how to include section support in your applications, refer to
the sections on EhwCreateIndex and EhwSearch in z/OS Text Search: Programming
the Text Search Engine.

Comparison of model names is case sensitive, but comparison of section tags can
be made case insensitive by using the keyword CASE_IGNORE when defining a
document model. For example, if the option is selected, it would not matter
whether <title> or <Title> had been used in the title section of HTML documents.

The model file entry will then look like:
; list of document models
[MODELS]
modelname = sample, ci

Note, that the above model property is invalid for XML document models. By
specification, they must use case sensitive names for elements.

Supported characters for document model name, section name and tag are
restricted to [a-z,A-Z,0-9].

HTML attributes like CONTENT will be indexed as belonging to the section
recognized prior to their occurence - which may be the no-section part of the
document.

Searches may retrieve documents containing a combination of CONTENT and
some text by specifying an ANDed boolean query (recommended, if not too fuzzy
for the document collection), or by using proximity operators like ″same
paragraph″. XML attributes are being indexed as text belonging to the section
which was defined for the element where they occurred.

Flat files and HTML documents
For flat files, the sections are marked up using HTML-like tags, for example,
<title>, <subject>. A document with marked-up sections might look as follows:
<title> IBM Dictionary of Computing
<author> McDaniel, George
<subject> Computers, Reference,

A document models file for flat-files or HTML documents might look as follows.
The model names and section names are case sensitive and they can contain only
A-Z, a-z, and 0-9.
;list of document models
;model always starts with 'modelname' and the name of the model
[MODELS]
modelname=sample
modelname=sample2
modelname=sample3

; a 'sample' document model definition
; left - section name identifier
; right - section name tag
[sample]
Title = title
Author = author
Subject = subject
Abstract = abstract
Content = content
[sample2]
Title = title

20 z/OS Text Search: Installing the Text Search Engine

Author = author
Subject = subject
[sample3]
Title = title
Author = author
Abstract = abstract
Docnum = docnum

If a document contains a marked-up section that is not defined in the document
model, the contents of the section are included in the previously defined section
for indexing and searching. For example, a document contains the following
marked-up sections:
<title> IBM Dictionary of Computing
<subject> Computers, Reference,
<author> McDaniel, George
<abstract> Contains up-to-the minute coverage of information processing systems,
communication products and facilities, personal computers, and office systems, as
well as the full range of IBM hardware and software products.

The document model, book, is defined as:
[MODELS]
modelname=book
[book]
Title = title
Author = author
Abstract = abstract

The <subject> section is not included in the book document model. When the
document is indexed, the contents of the subject section are indexed with the
contents of the title section. They are also available for searching within the title
section.

If you specified a list of models when you created the index, the default model is
the first in the list. You can change the default model using the imomodix
command.

XML documents
For section-enabled indexes, XML documents must be correctly structured and
contain a root element. The name of the root element must be the same as one of
the defined model names and the case must match. The model description in the
document models file must be a subset of the document model defined in the DTD
(document type definition) file for the document.

The model description must begin with the root element. For each XML element
you want to use as a section, you must include its complete hierarchy in the model
description. If a section is of type date, this section must be a leaf in the document
model tree. Nesting of attribute sections is not supported.

For section enabled indexes, well informed XML documents containing root
elements with names matching the name of a valid document model will be
indexed according to that document definition.

If no matching document model is found, there will be an error message and the
document will not be indexed. For indexes that are not section enabled all, or at
least the well formed XML documents will be indexed.

A model description for XML documents might look as follows:

Chapter 4. Planning your document indexes 21

; list of document models
[MODELS]
modelname = LETTER
; sample for XML model definition
; left-hand side = section name identifier encoding whole path
; right-hand side = section name tags specifying tag for each
: element of the path through the tree down to
: the specified node. Tag delimiter is /.
[LETTER]
LETTER = LETTER
LETTER/date = LETTER/DATE
LETTER/address = LETTER/ADDRESS
LETTER/address/City = LETTER/ADDRESS/CITY
LETTER/Content = LETTER/CONTENT
LETTER/Content/Greetings = LETTER/CONTENT/GREETINGS

An XML document might look as follows. It also shows how the sections that are
not defined in the model are indexed.
<?xml version="1.0"?>
<!DOCTYPE LETTER SYSTEM "letter.dtd">

<LETTER>
<HEADER>This tag has been skipped in the definition, to this text will

be added to the section named LETTER
</HEADER>
<DATE>

01.01.2000 03.02.2000
</DATE>
<ADDRESS>

Text will be added to the section named LETTER/address.
<CITY>

Text will added to section named LETTER/address/City.
</CITY>

</ADDRESS>
<CONTENT>

Text will be added to the section named LETTER/Content.

<NOSECTION>Text will be added to the section named LETTER/Content
because NOSECTION is not defined.

</NOSECTION>
<GREETINGS>

Text will be added to section named LETTER/Content/Greetings.
</GREETINGS>
</CONTENT>

</LETTER>

Performance considerations
The performance of the Text Search Engine during indexing and searching depends
on several factors, including the index type and configuration settings for the client
(IMOCL.INI) and the server (IMOSRV.INI). Use the information here together with
the information in “Chapter 4. Planning your document indexes” on page 15 and
“Appendix A. Configuration files” on page 71 to tune the performance of the Text
Search Engine.

Space requirements for indexes
The amount of space required for indexes depends on the amount of text
contained in the indexed documents. Other information in the documents, such as
graphics or formatting information is not relevant to the indexing process. When
only a primary index exists, it generally takes up 60-70% of the space required for
the text. If both a primary and a secondary index exist, they can take up to 90% of
the space required for the text.

22 z/OS Text Search: Installing the Text Search Engine

During indexing and index reorganization, you need additional disk space for the
index directory and the working directory. For the index directory, you need space
equivalent to that already used by the index directory. For the working directory,
the space requirements depend on the setting of the configuration option
UPDATETHRESHOLD. Table 1 shows typical settings for UPDATETHRESHOLD,
and the maximum space required by the working directory for linguistic and
precise indexes. For example, for the default configuration,
UPDATETHRESHOLD=4 000 000, you need a maximum of 115 MB for the working
directory.

Note: Larger values for the UPDATETHRESHOLD increase the amount of memory
and temporary disk space required. However, this decreases the indexing
time.

Table 1. Size of working directories for linguistic and precise indexes

UPDATETHRESHOLD Max. size of working directory (MB)

1 500 000 50

3 000 000 97

4 000 000 115

6 000 000 180

Time required to index documents
The time required to index documents is influenced by:
v Options in the server and client configuration that determine how fast the index

process runs, for example, the amount of memory used, the number of times a
reorganization takes place during an index update, and the size of the machine
you are using.

v The complexity of the document format, the more complex the format the longer
the Text Search Engine needs to parse it. For example, RTF documents take
longer to index than plain-text documents.

v The amount of linguistic processing involved, for example, a linguistic index
requires more linguistic processing than a precise index.

v The location of the document and the time taken to access it, for example, a file
on a local disk can be accessed quicker than a file stored in a database.

v The location of the index. For example, you can save indexing and
reorganization time if the index is on the same machine as the Text Search
Engine server. You can also save time if the index directory, the working
directory for the index, and the documents are all on different drives on the Text
Search Engine server machine.

v The size of the documents in the document collection. If you have some
knowledge about your document collection, you can set the
BUFFERSEGMENTSIZE and the BUFFERSEGMENTCOUNT to other values. For
example, if most of your documents are only 10 KB and only a few are up to
100 KB, you can set these options to BUFFERSEGMENTSIZE=10K and
BUFFERSEGMENTCOUNT=10.

The fastest index type is the precise index. If the input buffer size is configured so
that it is large enough to hold a medium-sized document and a reorganization of
the index is not needed, the indexing process can handle approximately 250 MB of
text an hour. With the same buffer configuration, an ngram index can handle
approximately 180 MB of text an hour.

Chapter 4. Planning your document indexes 23

Retrieval time for a search
The time taken to return a list of documents depends on how the search query is
formulated, the more complex the query the longer the search takes. For example,
if you set a limit on the number of documents returned, the result will be returned
quicker than if no limit is set. Other parameters, such as ranking the search results
and including wildcard characters in searches on large indexes, slow the search
down.

Merging the secondary index with the primary index
Merging the secondary index with the primary index can give you the following
benefits:
v An index update is faster when it does not need to sort words into a large

secondary index.
v Deleted documents result in ’holes’ in the index. If you add a document that is

already indexed, this is treated in the same way as deleting the document and
then adding it again—that is, a hole appears. A search on an index without holes
tends to be faster.

Do a reorganization if one of more of the following apply:
v The primary index is small compared to the secondary index.
v A lot of documents have been deleted from the index.
v When searches slow down appreciably and you have already turned tracing off.

Depending on values you set for the UPDATETHRESHOLD and UPDATESLICE
options in the server configuration file, an internal index reorganization takes place
automatically during an index update.

24 z/OS Text Search: Installing the Text Search Engine

Chapter 5. Building and maintaining indexes

This chapter describes how you might build and maintain indexes using the
delivered set of administration commands and Library Services. It shows how you
can:
v Build a new index
v Refresh an index
v Merge and compress indexes
v Query the status of an index
v Back up and restore indexes
v Move an index to another location

The commands for building and maintaining indexes are described in full in
“Chapter 6. Administration commands” on page 29.

The Text Search Engine application programming interface (API) offers other
methods for building and maintaining indexes. For further information on these
methods, see z/OS Text Search: Programming the Text Search Engine.

Building a new index
Before starting to search for information, you must build an index. Figure 3 shows
an overview of the indexing process.

Figure 3. The indexing process

© Copyright IBM Corp. 1998, 2001 25

To build a new index, do the following:
1. Create an input file that lists all the files that you want to include in the index.

This is called a document list.
2. Create an index.
3. Define the rules for the index.
4. Populate the index using the document list.

Creating the document list
The Text Search Engine builds an index of searchable keywords using the content
of all the files it finds in the document list. When you create this file, each file
name must be on a line by itself (that is, a new-line character must separate the
names). In a client/server environment, the document access path given in the
document list must be unique. Documents scheduled from the client must be
accessible by the server.

For example, if all your documents are located in the same subdirectory, for
example, /usr/local/webdocs, you can use the following command to create the
document list:
find /usr/local/webdocs -name "*.html" -type f -print > /tmp/inputlist

Creating an index
Create an index using the imocrix command. Ensure that you have enough space
for the index files and the temporary files created during indexing. For example,
files for a linguistic index take up approximately 40% of the space required for the
documents and the temporary files require approximately 180% of the space
required for the documents.

Defining the rules for the index
The Text Search Engine supports different document formats, code pages, and
languages. You can define a set of rules for each index that define default values
for each of these characteristics. The rules are used during indexing if any of the
values cannot be determined automatically. To specify the rules for an index, use
the imorulix command.

Populating the index
Building the index is a two-step process; you schedule the documents for indexing,
then index the documents.
1. Schedule the documents in the document list for indexing using the imoqueue

command. To schedule several document lists for the same indexing update,
issue an imoqueue command for each list.

2. Start the index process for the scheduled documents using the imoupdix
command.

The index process runs in the background. You can check the status of the index
update using the imostfix command.

The first time you use imoupdix on an index file, a primary index is created.
Subsequent calls to imoupdix produce secondary indexes.

Refreshing an index
You can refresh an existing index by adding or deleting documents:

26 z/OS Text Search: Installing the Text Search Engine

1. Create separate document lists for the documents you are adding to the index
and the documents you are deleting from it.

2. Schedule the documents for adding or deleting using the imoqueue command.
3. Refresh the index using the imoupdix command.

You can refresh an index at any time. For optimum performance, however, it is
best to avoid periods of peak activity. During a refresh of the index, the current
version is always available for searching. When the update is complete, the index
is automatically committed for searching.

Reorganizing indexes
When you build a new index with imocrix, imoqueue, and imoupdix, the Text
Search Engine creates a set of files that form the primary index. Subsequent calls to
imoqueue followed by imoupdix create additional files that form the secondary
index.

As the size of the secondary index grows, the amount of redundant information
between the primary and secondary index increases. Eventually, you should merge
the primary and the secondary index into one index so that you can recover disk
space.

Use the imoreoix command to reorganize indexes.

Index reorganizations can also occur automatically during an index update. The
value of the options UPDATETHRESHOLD and UPDATESLICE in the
configuration file for the server determine when this reorganization takes place.
For further information on the configuration options, see “Server configuration
file” on page 72.

Querying the status of an index
You can query the status of any Text Search Engine index using the imostaix
command. The status report shows how many documents are in the primary
index, how many are in the secondary index, and how many are in the scheduling
queue.

Backing up and restoring index files
If you have system or hardware problems that cause you to lose your index data
files, you can either rebuild the indexes or use backed up index data files to restore
them. For information on how to build indexes, see “Building a new index” on
page 25.

To back up index data files:
1. Determine the index data path for the index you want to backup. All the files

belonging to an index are stored in its index data path:
v Start the server instance if it is not already started (imoss -start command).
v Use the imostaix command to determine the index data location.

2. Do one of the following:
v Stop the server instance (imoss -stop command).
v Use the imoctrix command to suspend the index.

3. Copy all the files in the index data directory to the backup medium or location.

Chapter 5. Building and maintaining indexes 27

4. Do one of the following:
v Restart the server instance (imoss -start command).
v Use the imoctrix command to resume the index.

To restore index data files:
1. Determine the index data path for the index you want to restore.

v Start the server instance if it is not already started (imoss -start command).
v Use the imostaix command to determine the index data location.

2. Stop the server instance; the server instance must be down in order to restore
an index (imoss -stop command).

3. Copy all backed up files to the index data directory.
4. Restart the server instance (imoss -start command).

If you do not want to stop the server instance while you are backing up or
restoring an index, you can also:
1. Deregister the index (imoregix command).
2. Copy the data files to or from the backup directory.
3. Register the index (imoregix command).

Moving an index to another location
If disk space gets low you might want to move an index from one location to
another. Or, if you decide to use another machine as the Text Search Engine server,
you might want to move existing index files to the new machine.

Tip
You can move an index only between Windows NT servers or UNIX servers.
You cannot move an index created on a Windows NT server to a UNIX
server, or vice versa.

To move an index:
1. Get information about the parameters used when the index was created:

v Start the server instance if it is not already started (imoss -start command).
v Use the imostaix command to view the index properties.

2. Deregister the index (imoregix command).
3. Copy all the files in the index data directory to the backup medium or location.
4. Register the index on the new server instance:

a. Start the server instance for the new location (imoss -start command).
b. Use the imoregix command to register the index. Use the parameters that

were returned by the imostaix command in step 1. The index data path
should be a directory on the new server instance.

You can also use this method to provide indexes on a read-only medium, such as a
CD-ROM or use an index on one server instance that was created on a different
server instance. However, you must ensure that the index is registered with only
one server instance.

28 z/OS Text Search: Installing the Text Search Engine

Chapter 6. Administration commands

Use this chapter to perform administration tasks for the Text Search Engine using
the command interface. There are commands for:
v Index administration
v Document administration
v Document model administration
v Thesaurus administration
v Server administration
v Client administration

The Text Search Engine API offers other methods for building and maintaining
indexes. For further information on these methods, see z/OS Text Search:
Programming the Text Search Engine.

Index administration
You can use the following commands for index administration:

IMOCLRIX Clear index

IMOCRIX Create index

IMOCTRIX Control index: reset, suspend, and resume index

IMODELIX Delete index

IMOLSTIX List all indexes

IMOMSGIX Display indexing messages

IMOREOIX Reorganize index

IMORULIX Maintain indexing rules

IMOSTAIX Display index status

IMOSTFIX Display status of index functions

IMOUPDIX Update index

© Copyright IBM Corp. 1998, 2001 29

IMOCLRIX - clear index

Purpose
Use this command to remove all index entries from an existing index on the Text
Search Engine server. For further information on clearing indexes, see
EhwClearIndex in z/OS Text Search: Programming the Text Search Engine.

Tip
Use the imoclrix command with care. The index entries are cleared without
you having to confirm their removal.

Syntax
imoclrix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index containing the index entries to be removed.

Example
imoclrix -s SERVER -x TESTIX

30 z/OS Text Search: Installing the Text Search Engine

IMOCRIX - create index

Purpose
Use this command to create a new empty index on the Text Search Engine server.
For further information on creating indexes, see EhwCreateIndex in z/OS Text
Search: Programming the Text Search Engine.

Syntax
imocrix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
-t <index type>
-p <index data path>
[-pw <index work path>]
[-sections <list of models>]
[-lsce <client library services>]
[-lsse <server library services>]
[-ccsid <code page for ngram index>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the created index. Index names must be unique. Index names can
be up to 8 characters long.

index type
The type of index. The available index types are:

LING Linguistic index, that is, words are indexed in their base form.

PREC Precise index, that is, words are indexed in the grammatical form in
which they occur in the original text.

NORM
Normalized precise index, that is, words are indexed in the
grammatical form in which they occur in the original text but in
lowercase, regardless of the case in the original document.

NGRAM
A case-insensitive index is created for both single-byte character set
(SBCS) languages and double-byte character set (DBCS) languages.
This index type allows both exact searches and fuzzy searches.

NGRAMCS
A case-sensitive index based on ngrams is created for both single-byte

Chapter 6. Administration commands 31

character set (SBCS) languages and double-byte character set (DBCS)
languages. This index type allows both exact searches and fuzzy
searches.

index data path
The location of the index data files. The directory is created if it does not
already exist.

index work path
The location of the working directory. The directory is created if it does not
already exist. This parameter is optional. If an index work path is not specified,
the work files are stored in the subdirectory work of the index data path. To
improve performance, store the index work files on a different physical disk to
the index data files.

list of models
To enable section support for the index, you must specify a list of document
models. Only these models are available to the index. The first model in the
list is the default document model. It is used when a document model is not
specifed for indexing or searching.

A set of document models is available on the server instance. Use the imolstdm
command to see all the models available and choose the subset to be used by
the new index.

client library services
The name of the client library services loadable module that is used with this
index. The name does not include the file extension. If a name is not specified,
the library services for the file system is used, for example, IMOLSCFS. The
loadable module must be located in a searchable path for dynamically loadable
modules.

server library services
The name of the server library services loadable module that is used with this
index. The name does not include the file extension. If a name is not specified,
the library services for the file system is used, for example, IMOLSSFS. The
loadable module must be located in a searchable path for dynamically loadable
modules.

code page
The code page to be used for an NGRAM or an NGRAMCS index. The code
pages available depend on the server platform. For a full list of the code pages,
see CreateIndex in z/OS Text Search: Programming the Text Search Engine.

If you do not specify a code page for an NGRAM index, the index is created
using code page 500.

Example
imocrix -s SERVER -x TESTIX -t LING -p /index/testix
imocrix -s SERVER -x NGRAMIX -t NGRAM -p /index/ngramix -ccsid 942
imocrix -s SERVER -x NGRAMCS -t NGRAMCS -p /index/ngramcs -pw /indexwork/ngramcs
imocrix -s SERVER -x TESTIX -t LING -p /index/lingsec/ -sections "sample, PLAY"
imocrix -s SERVER -x WEBINDEX -t NORM -p /index/webindex -lsse imolssht

32 z/OS Text Search: Installing the Text Search Engine

IMOCTRIX - control index

Purpose
Use this command to:
v Unlock an index that was locked as a result of an error during processing
v Suspend an index for backup
v Resume an index

You cannot specify both suspend and resume in the same call.

For further information on controlling indexes, see EhwSetIndexFunctionStatus in
z/OS Text Search: Programming the Text Search Engine.

Syntax
imoctrix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
[-reset]
[-suspend]
[-resume]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the created index. Index names must be unique.

reset
Resets the specified index name.

suspend
Suspends the specified index.

resume
Resumes the specified index.

Example
imoctrix -s SERVER -x TESTIX -suspend

Chapter 6. Administration commands 33

IMODELIX - delete index

Purpose
Use this command to delete an index on the Text Search Engine server. For further
information on deleting indexes, see EhwDeleteIndex in z/OS Text Search:
Programming the Text Search Engine.

Tip
Use the imodelix command with care. The index is deleted without you
having to confirm the deletion.

The subdirectories that were created with the imocrix command are not removed
with the imodelix command.

Syntax
imodelix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index to be deleted.

Example
imodelix -s SERVER -x TESTIX

34 z/OS Text Search: Installing the Text Search Engine

IMOLSTIX - list indexes

Purpose
Use this command to list all the indexes for a search service. For further
information on listing indexes, see EhwListIndexes in z/OS Text Search:
Programming the Text Search Engine.

Syntax
imolstix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

Example
imolstix -s SERVER

Chapter 6. Administration commands 35

IMOMSGIX - display indexing messages

Purpose
Use this command to list the messages that were produced during an indexing
run. The error messages and the recommended actions to take in the error
situation are explained in z/OS Text Search: Programming the Text Search Engine.

For further information on displaying indexing messages, see
EhwGetIndexingMsgs in z/OS Text Search: Programming the Text Search Engine.

Syntax
imomsgix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
[-delete]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

delete
Deletes all indexing messages.

Example
imomsgix -s SERVER -x TESTIX

36 z/OS Text Search: Installing the Text Search Engine

IMOREOIX - reorganize index

Purpose
Use this command to reorganize an index. You might want to do this, for example,
when the number of documents in the secondary indexes is greater than the
number of documents in the primary index or to remove obsolete information
from the index. The index information is compressed thus improving storage
utilization and performance.

To see the number of documents in the primary and secondary indexes, use the
imostaix command. To check the progress of an index reorganization, use the
imostfix command.

For further information on reorganizing indexes, see EhwReorgIndex in z/OS Text
Search: Programming the Text Search Engine.

Syntax
imoreoix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

Example
imoreoix -s SERVER -x TESTIX

Chapter 6. Administration commands 37

IMORULIX - maintain indexing rules

Purpose
Use this command to specify rules for assigning default values for the document
format, language, and the code page. These rules are used during indexing when
any of these values cannot be determined automatically.

For further information on maintaining indexing rules, see EhwGetIndexingRules
in z/OS Text Search: Programming the Text Search Engine.

Syntax
imorulix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
[-dfmt <document format>]
[-ccsid <code page>]
[-lang <language>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

document format
Specify one of the following default document formats:
v TDS
v ASCIISECTION
v RTF
v HTML
v XML

Alternatively, you can use a numeric value for the document format. See the
file, IMOLSDEF.H, for a list of the numeric values. This file is located:
v On AIX in /usr/TextTools/include
v On Solaris in /opt/TextTools/include
v On Windows NT in >TARGETDIR<\TextTools\include

To use your own document formats, define a value for the document format
here. This value must be greater than the value set for EHW_USER_FORMATS
in IMOLSDEF.H. This file is located:

38 z/OS Text Search: Installing the Text Search Engine

v On AIX in /usr/TextTools/include
v On Solaris in /opt/TextTools/include
v On Windows NT in >TARGETDIR<\TextTools\include

Unsupported document formats can be used only with a user exit. For more
information on user exits, see “Using unsupported document formats” on
page 16.

code page
The default code page. If UCS2 code page is specified, default is to assume big
endian layout. Documents may switch endianness of UCS2 by using ″\xff
\xfe″ notation.For a list of the supported code pages, see z/OS Text Search:
Programming the Text Search Engine.

language
The default document language. You can specify a three-letter language code
or a numeric value. For a list of the languages supported and the values that
can be used, see the file IMOLANG.H.

Example
To show default indexing rules:
imorulix -s SERVER -x TESTIX

To set the document format:
imorulix -s SERVER -x TESTIX -dfmt TDS

To set the code page and the document format:
imorulix -s SERVER -x TESTIX -dfmt 14 -ccsid 850

To set the document format, code page, and language:
imorulix -s SERVER -x TESTIX -dfmt TDS -ccsid 850 -lang ENU

Chapter 6. Administration commands 39

IMOSTAIX - display index status

Purpose
Use this command to display general information and status information for an
index on the Text Search Engine server.
v General information

Includes the index type, index name, the library services, the data and work
path, and the code page (optional).

v Status information
The number of documents in the primary index, the secondary index (if it
exists), and the input queue. If messages were generated during indexing, the
number of messages generated is also shown. To view the messages, use the
imomsgix command.

For further information on displaying the index status, see EhwGetIndexStatus in
z/OS Text Search: Programming the Text Search Engine.

Syntax
imostaix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

Example
imostaix -s SERVER -x TESTIX

40 z/OS Text Search: Installing the Text Search Engine

IMOSTFIX - display status of index functions

Purpose
Use this command to display status information for the Text Search Engine
functions search, scheduling, indexing, and index reorganization. It shows whether
each of these functions are enabled, running, or stopped for a particular index. If
an index has been stopped, use the imoctrix command to reset it. To get
information on the error code, see z/OS Text Search: Programming the Text Search
Engine.

For further information on displaying the status of the index functions, see
EhwGetIndexFunctionStatus in z/OS Text Search: Programming the Text Search Engine.

Syntax
imostfix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

Example
imostfix -s SERVER -x TESTIX

Chapter 6. Administration commands 41

IMOUPDIX - update index

Purpose
Use this command to start an index update. The indexing process is a background
process. Use the imostfix command to check the progress of the index update. Use
the imostaix command to see messages generated during the index update.

For further information on updating indexes, see EhwUpdateIndex in z/OS Text
Search: Programming the Text Search Engine.

Syntax
imoupdix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
[-wait <check interval>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

check interval
A value in seconds that determines how often the status of the indexing
process is checked. Choose a value that is about half the value of the total
expected indexing time. The command returns when the indexing process has
finished.

Example
imoupdix -s SERVER -x TESTIX
imoupdix -s SERVER -x TESTIX -wait 5

Document administration
You can use the following commands for document administration:

IMOQUEUE Add documents to the queue for indexing or deleting from the
index, clearing all documents from the document queue

IMOSRCH Search for documents

42 z/OS Text Search: Installing the Text Search Engine

IMOQUEUE - queue documents

Purpose
Use this command to schedule one or more documents for indexing or deleting.
You can also use this command to clear the document queue. For further
information on scheduling documents, see EhwScheduleDocument in z/OS Text
Search: Programming the Text Search Engine.

Syntax
imoqueue

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
-add | -delete | -clear
[-ascii | -ebcdic]
[-l <document list file name>]
[-f <file name>]
[-v]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

-add
Adds document IDs to the index queue for adding to the index. Use the -l or
the -f parameter to specify the document IDs.

-delete
Adds document IDs to the index queue for deleting from the index. Use the -l
or the -f parameter to specify the document IDs.

-clear
Removes entries from the index queue.

-ascii/-ebcdic
For file-based library services only. Specifies the character set used by the
server operating system; ASCII for all workstation operating systems and
EBCDIC for z/OS. The document names are converted to the character set
supported by the server.

document list file name
The fully-qualified name of the input file containing the list of documents to be
indexed. The new index entries are generated from the list of documents. A
new-line character must separate each document listed in the file.

The document list file name is optional if you specify a file name.

Chapter 6. Administration commands 43

Note: The -l parameter is tailored to the delivered file-system library services.
If your document IDs do not conform to the Text Search Engine rules,
you must write your own library services or queuing command. See
z/OS Text Search: Programming the Text Search Engine for information on
the rules for document IDs.

file name
The fully-qualified name of a single document that you want to schedule for
indexing.

The file name is optional if you specify a document list file name.

Note: The -f parameter is tailored to the delivered file-system library services.
If your document IDs do not conform to the Text Search Engine rules,
you must write your own library services or queuing command.

-v Lists all the scheduled documents (verbose mode).

Example
The doc.lst might look as follows:
/home/user/document1.txt
/home/user/document2.txt
/home/user/document3.txt

To add documents in the file list to the input queue for indexing:
imoqueue -s SERVER -x TESTIX -add -l /home/user/doc.lst

To add documents in the file list to the input queue to be deleted from the index:
imoqueue -s SERVER -x TESTIX -delete -l /home/user/doc.lst

To clear the index queue:
imoqueue -s SERVER -x TESTIX -clear

To add single documents to the index queue:
imoqueue -s SERVER - x TESTIX -add -f /home/user/document1.txt

To queue documents stored in MVS™ data sets:
imoqueue -s SERVER -x TEXTIX -add -f "//'SYS1.PARMLIB(MEMBER)' "

44 z/OS Text Search: Installing the Text Search Engine

IMOSRCH - search for documents

Purpose
Use this command to search a document index:
v Boolean search is supported with the keywords AND, OR, NOT.
v Free-text search and hybrid search are available.
v Specify subqueries in parentheses ().
v Specify sentence, paragraph, and document proximity with brackets [].

The phrase must be separated into single search terms. This is done with the ″|″
operator. Proximity for sentence, paragraph, and document is specified by ″[S ...
S]″, ″[P ... P]″, or ″[D ... D]″.

v Wildcard searches using * for masking several characters, and ? for masking
single characters.

The imosrch command provides only limited search capabilities. You can extend
these using the API function EhwSearch. For further information on EhwSearch,
see z/OS Text Search: Programming the Text Search Engine.

Syntax
imosrch

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
[-ccsid <code page>]
[-lang <language>]
[-max <maximum number of documents>]
[-rlim]
[-ascii | -ebcdic]
[-rank]
[-noseq]
[-section <section name>]
-term <search query>
-fterm <free-text search query>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The name of the index.

code page
The code page for the search terms.

Default: Code page 500.

Chapter 6. Administration commands 45

language
The language you want to search in.

Default: ENU

maximum number of documents
The maximum number of documents shown as a result of the search. This
value does not affect the number of documents found and reported.

Default: 50 documents

rlim
The document limit. If the option is specified, it is the maximum number of
documents that can be processed on the save and displayed to the user in a
search result.

For freetext queries, this option must be used if more than 50 documents are to
be processed.

-ascii/-ebcdic
For file-based library services only. Specifies the character set used by the
server operating system; ASCII for all workstation operating systems and
EBCDIC for z/OS. The document names are converted to the character set
supported by the server.

rank
If this option is specified, the results are ranked and the rank values are shown
in the output.

noseq
Terms in the search query can occur in any sequence in a single sentence in the
document text. If this option is not specified, terms in the search query must
occur in exactly the same sequence in a single sentence in the document text.

This option cannot be specified for Boolean searches using the NOT operand
or for searches on NGRAM indexes.

section name
This restricts the search to the named section of a document. This is only
available if section support is enabled for the index.

search query
A boolean search query including the operands AND, OR, NOT. For search
terms containing spaces, enclose the term in quotation marks, for example,
″John Smith″. Enclose subqueries in parentheses. You can also include phrases.

If you also specify an -fterm, a hybrid search is carried out.

free-text search query
The free-text part of the query. Any stop words in the query are ignored.

If you also specify a -term, a hybrid search is carried out.

Example
To search for a term:
imosrch -s SERVER -x TESTIX -term computer

To search for a phrase:
imosrch -s SERVER -x TESTIX -term "Bill Clinton"

To do a search with the codepage and language for German and set the maximum
number of documents returned:
imosrch -s SERVER -x TESTIX -ccsid 273 -language 4841 -max 100 -term Schönaich

46 z/OS Text Search: Installing the Text Search Engine

To do a complex Boolean search with subqueries and ranking:
imosrch -s SERVER -x TESTIX -rank -term "((Bill Clinton AND innovation) AND
(NOT government AND NOT state)) OR IBM"

To do a free-text search:
imosrch -s SERVER -x TESTIX -fterm "big house water"

To do a hybrid search with ranking:
imosrch -s SERVER -x TESTIX -rank -term "government AND Washington"

-fterm "law justice"

To do a Boolean search with paragraph proximity:
imosrch -s SERVER -x TESTIX -term "[P computer | test P]"

To search in an index with section support based on the model ’book’ for the word
’computer’ in the title section:
imosrch -s SERVER -x TESTIX -term computer -section book/Title

To search an index using wildcard characters:
imosrch -s SERVER -x TESTIX -term "gov* AND was?ington"

Document model administration
You can use the following commands for document model administration:

IMOCRDM Create a document model

IMODELDM Delete a document model

IMOGETDM Display a document model

IMOLSTDM List document models

IMOMODIX Set default document model

Chapter 6. Administration commands 47

IMOCRDM - create document model

Purpose
Use this command to create a document model and add it to the set defined for
the server instance.

For further information on creating document models, see
EhwCreateDocumentModel in z/OS Text Search: Programming the Text Search Engine.

Syntax
imocrdm

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
[-x <index name>]
[-docmod <document model name>]
[-l <ini file with model description>]
[-p]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
If you specify an index name, the new model is assigned only to this index. It
is then available for the next update on this index.

If you do not specify an index name, the model is added to the set of models
defined for the server instance. It is then available when you create an index
using the imocrix command.

document model name
The document model name can contain the characters A-Z, a-z, and 0-9 and be
up to 32 characters long. It is case-sensitive.

ini file
The name of an ini file that contains the description of the document model in
the following format:
[document model name]
sectionName1 = sectionTag1
sectionName2 = sectionTag2

The section names are case-sensitive. Ensure that the document model name
and the name passed to the command are the same.

To create the model description interactively, use the -p parameter.

48 z/OS Text Search: Installing the Text Search Engine

-p (interactive mode)
Instead of using an ini file to create the model description, you can specify
section names and section tags interactively. Press Enter to end the model
description.

To create a model description interactively:
imocrdm -s SERVER -docmod newmodel -p

You are prompted for information about the sections:
Enter section name: title
Enter section tag: TITLE
Enter section name: author
Enter section tag: AUTHOR
Enter section name: (leave blank)
Create document model (Y/N): Y

Example
imocrdm -s SERVER -x TESTIX -docmod newmodel -l /tmp/model.ini
imocrdm -s SERVER -docmod newmodel -l /tmp/model.ini

Chapter 6. Administration commands 49

IMODELDM - delete document model

Purpose
Use this command to delete a document model from the set defined for the server
instance. The model is still available for searching and updating the indexes it has
been assigned to. However, it is not available when you create a new index.

For further information on deleting document models, see
EhwDeleteDocumentModel in z/OS Text Search: Programming the Text Search Engine.

Syntax
imodeldm

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
[-docmod <document model name>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

document model name
The name of the document model you want to delete. To see a list of models
for the server instance, use the imolstdm command.

Example
imodeldm -s SERVER -x TESTIX -docmod oldmodel

50 z/OS Text Search: Installing the Text Search Engine

IMOGETDM - display a document model

Purpose
Use this command to display the description of a document model.

For further information on updating indexes, see EhwGetDocumentModel in z/OS
Text Search: Programming the Text Search Engine.

Syntax
imogetdm

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
[-x <index name>]
-docmod <document model name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

document model name
The name of the document model you want to display. To see a list of models
for an index or for the server instance, use the imolstdm command.

index name
The name of the index to which the data model is associated. If you do not
specify an index name, the document model from the server instance set of
model is shown.

Example
imogetdm -s SERVER -x TESTIX -docmod newmodel
imogetdm -s SERVER -docmod newmodel

Chapter 6. Administration commands 51

IMOLSTDM - list document models

Purpose
Use this command to display a list of models associated with an index or defined
for the server instance.

For further information on displaying a list of models, see
EhwListDocumentModels in z/OS Text Search: Programming the Text Search Engine.

Syntax
imolstdm

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
[-x <index name>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
If you specify an index name, a list of models for this index are shown. If you
do not specify an index name, a list of the models on the server instance is
shown.

Example
imolstdm -s SERVER -x TESTIX
imolstdm -s SERVER

52 z/OS Text Search: Installing the Text Search Engine

IMOMODIX - set default document model

Purpose
The default document model for an index is set when the index is created; it is
always the first model given in the list of models. Use this command to change or
display the default document model used by an index.

If documents are to be indexed for a section-enabled index and they do not contain
any information about the document model to be used, they are indexed according
to the default document model. If a document model is not specified on a search,
the default document model is also used.

For further information on updating indexes, see EhwCreateDocumentModel in
z/OS Text Search: Programming the Text Search Engine.

Syntax
imomodix

[-h| -H| -?| -copyright] [-quiet]
-s <search service name>
-x <index name>
[-docmod <document model name>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

search service name
The search service name specified during creation of the client profile (imocrcl
command). Each search service is associated with one server instance. Use the
imocfgcl command to get a list of all the search service names.

index name
The index for which you want to specify a default model.

document model name
The default document model for the index. This must be one of the models
specified when the index was created or assigned to the index later using the
imocrdm command. To the see the models associated with the index, use the
imolstdm command.

Example
To show the current default model for an index:
imomodix -s SERVER -x TESTIX

To set the document model, sample, as the default for an index:
imomodix -s SERVER -x TESTIX -docmod sample

Thesaurus administration
You can use the following commands for thesaurus administration:

Chapter 6. Administration commands 53

IMOTHESC Compile a Text Search Engine thesaurus definition file

IMOTHESN Compile an NGRAM thesaurus definition file

54 z/OS Text Search: Installing the Text Search Engine

IMOTHESC - compile a thesaurus definition file

Purpose
Use this command to compile a Text Search Engine thesaurus definition file into a
binary thesaurus dictionary format. The definition file must be in SGML format.
For information on specifying the content of the definition file, see z/OS Text Search:
Programming the Text Search Engine.

To use the thesaurus dictionary files during a search, do one of the following:
v Move them to the resource directory for the server instance. This is the directory

specified by the IMONLPSSRV option in the server configuration file.
v Specify the location of the files in the query.

Syntax
imothesc

[-h| -H| -?| -copyright] [-quiet]
-ccsid <code page>
-f <definition file name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

code page
The code page the thesaurus definition file is written in. This must be code
page 500.

definition file name
Name of the file containing the thesaurus definition. The file name must
contain either the absolute path or the relative path to the file.

The thesaurus dictionary is generated in the same directory as the definition
file. It has the same name as the definition file and the extensions th1 through
th6.

Chapter 6. Administration commands 55

Tip
Because thesaurus files are overwritten when they have the same names,
it is recommended that you use a separate directory for each thesaurus.

Example
imothesc -ccsid 500 -f thesaurus/sample.sgm

56 z/OS Text Search: Installing the Text Search Engine

IMOTHESN - compile an NGRAM thesaurus definition file

Purpose
Use this command to compile an NGRAM thesaurus definition file into a binary
thesaurus dictionary format. The definition file must be of the format described in
z/OS Text Search: Programming the Text Search Engine for NGRAM thesauri.

To use the thesaurus dictionary files during a search, do one of the following:
v Move them to the resource directory for the server instance. This is the directory

specified by the IMONLPSSRV option in the server configuration file.
v Specify the location of the files in the query.

Syntax
imothesn

[-h| -H| -?| -copyright] [-quiet]
[-ccsid <code page>]
[-f <definition file name>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

code page
The code page the thesaurus file is written in. For a list of the supported code
pages, see EhwCreateIndex in z/OS Text Search: Programming the Text Search
Engine.

file name
Name of the file containing the thesaurus definition. The file name must
contain either the absolute path or the relative path to the file. The file name is
restricted to 8+3 characters, the extension is optional.

The thesaurus dictionary is generated in the same directory as the definition
file. It has the same name as the definition file and the extensions wdf, wdv,
grf, grv, MEY, ROS, NEY, SOS, and lkn, where n is a digit.

Tip
Because thesaurus files are overwritten when they have the same names,
it is recommended that you use a separate directory for each thesaurus.

Server administration
You can use the following commands for server administration:

IMOADMSV Configure server settings

IMOCFGSV Update the server configuration

IMOCRINS Create a server instance

Chapter 6. Administration commands 57

IMOSS Start server instance

58 z/OS Text Search: Installing the Text Search Engine

IMOADMSV - update server settings

Purpose
Use this command to update settings for resources used by the server instance, for
example, the working directory for temporary files.

Syntax
imoadmsv

[-h| -H| -?| -copyright] [-quiet]
[-d]
[-i <server instance name>]
[-work <working directory for temporary files>]
[-r <resource path>]
[-dtd <path to external dtd files>]
[-userexit <user exit for format recognition>]
[-userexitall <on | off>]
[-fmtrecogn <on | off>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

-d Display current settings.

server instance name
The name of the server instance you want to configure.

working directory
The directory where temporary files are stored. By default, the working
directory is a subdirectory of the server instance path set by the environment
variable, IMOCONFIGSRV.

resource path
The directory where the resource files, such as dictionaries are located. The
server needs the resource path, for example, for stopword handling and other
linguistic processing.

path to external dtd files
The directory where the external DTD files needed during indexing of XML
files are located. If you do not specify a directory, it is assumed that the DTD
files are in the same directory as the XML files or accessible using the path
statement specified in the XML files.

user exit
The name of the user exit used to convert unsupported document formats. For
information on creating user exits, see “Using unsupported document formats”
on page 16.

userexitall
If you specify on, the user exit is used for all document formats, including the
supported document formats.

Chapter 6. Administration commands 59

fmtrecogn
If you specify on, each document is analyzed to determine the appropriate
parser for the document type.

Processing is faster if you switch off automatic format recognition. If you are
not using userexitall, documents are parsed according to the default
document format set by the imorulix command.

Example
imoadmsv -i inst1
imoadmsv -i inst1 -dtd /home/dtd -fmtrecogn off

60 z/OS Text Search: Installing the Text Search Engine

IMOCFGSV - update server configuration

Purpose
Use this command to update and display the communication settings for the
server instance.

Syntax
To update the server setup:
imocfgsv

[-h| -H| -?| -copyright] [-quiet]
[-p]
[-d -i <server instance name>]
[-c local -i <server instance name>

[-t <max tasks>]]

[-c tcpip -i <server instance name>
-n <port number>
-m <machine name>
[-t <max tasks>]
[-k <tasks kept available>]
[-l <time limit>]]

To set up the server in interactive prompt mode:
imocfgsv -p

To display the server setup:
imocfgsv -d -i <server instance name>

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

local
The clients and the server are on the same machine. The client requests are
handled in one daemon process.

tcpip
Defines the TCP/IP protocol for client/server communication.

server instance name
A server instance defines a particular set of indexes, local and remote, that
users work with. The name can be up to 8 characters long.

port number
The TCP/IP port address that all clients use when they connect to the search
service. This port number must not be assigned or used by any other
applications on the system. Your system administrator usually assigns the port
number.

machine name
For TCP/IP, this is the host name or IP address of the server on which the Text
Search Engine server is installed.

Chapter 6. Administration commands 61

max tasks
The maximum number of tasks that the search service can handle at the same
time. Valid values are integers between 1 and 100. Your system performance
decreases as the value for this parameter increases. If, however, you set this
value too low, some clients might be unable to search at all.

tasks kept available
The number of tasks to be started in advance to handle client requests. Valid
values are integers between 1 and 10.

To improve performance, a client making a request should always find a
service task ready to handle its request. However, having too many unused
service tasks open unnecessarily lowers the search performance. The value
specified must be less than or equal to the value specified for the maximum
number of tasks (MaxTasks).

time limit
The time (in seconds) that a search service task remains occupied without
receiving a request from a client. Valid values are integers between 100 and
99999. After the specified time period has passed, the search service task ends
the connection to the client. This sets search service tasks free for other users.
The connection is automatically established again when the client performs the
next action, provided that a free search service task is available. Note that
reconnecting causes a short delay.

Set this value to the longest time that a query can run. If queries are often
complex and run simultaneously, set this value to 600 seconds or more. If
queries are mostly simple and hardly ever run simultaneously, set it to 100
seconds or more.

Note: If the value is too low, queries that take longer end before they have
completed; if the value is too high, free search service tasks might be not
available.

Example
imocfgsv -c tcpip -i MYINST -n 7777 -m MYHOST

62 z/OS Text Search: Installing the Text Search Engine

IMOCRINS - create server instance

Purpose
Use this command to create and configure a server instance. A configuration file is
also created. For further information on the contents of the configuration file, see
“Server configuration file” on page 72.

Syntax
imocrins

[-h| -H| -?| -copyright] [-quiet]
[-c local -i <server instance name>

-r <resource path>]

[-c tcpip -i <server instance name>
-r <resource path>
-n <port number>
-m <machine name>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

local
The clients and the server are on the same machine. The client requests are
handled in one daemon process.

tcpip
Defines the TCP/IP protocol for client/server communication.

server instance name
A server instance defines a particular set of indexes, local and remote, that
users work with. The name can be up to 8 characters long.

resource path
The directory where the dictionaries are located.

port number
The TCP/IP port address that all clients use when they connect to the search
service. This port number must not be assigned or used by any other
applications on the system. Your system administrator usually assigns the port
number.

machine name
For TCP/IP, this is the host name or IP address of the server on which the Text
Search Engine server is installed.

Example
imocrins -c tcpip -i MYINST -r /usr/TextTools/dict -n 7777 -m MYHOST

Chapter 6. Administration commands 63

IMOSS - start/stop server instance

Purpose
Use this command to start, stop, or query the status of a search service.

Syntax
imoss

[-h| -H| -?| -copyright] [-quiet]
[-start <server instance name>]
[-stop <server instance name>]
[-status <server instance name>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

server instance name
A server instance defines a particular set of indexes, local and remote, that
users work with.

-start
Starts the named server instance.

-stop
Stops the named server instance. On UNIX-based systems, the allocated
resources, such as shared memory or semaphores are removed from the
system.

-status
Queries the status of the named server instance.

Client administration
You can use the following commands for client administration:

IMOADMCL Configure client settings

IMOCFGCL Update a client profile

IMOCRCL Create a client profile

64 z/OS Text Search: Installing the Text Search Engine

IMOADMCL - update client configuration

Purpose
Use this command to update settings for resources used by the client, for example,
the working directory for temporary files.

Syntax
imoadmcl

[-h| -H| -?| -copyright] [-quiet]
[-d]
[-work <working directory for temporary files>]
[-r <resource path>]
[-dtd <path to external dtd files>]
[-userexit <user exit for format recognition>]
[-userexitall <on | off>]
[-fmtrecogn <on | off>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

-d Display current settings.

working directory
The directory where temporary files are stored. By default, the working
directory is a subdirectory of the server instance path set by the environment
variable, IMOCONFIGCL.

resource path
The directory where the resource files, such as dictionaries are located. The
server needs the resource path, for example, for stopword handling and other
linguistic processing.

path to external dtd files
The directory where the external DTD files needed for parsing XML documents
are located. If you do not specify a directory, it is assumed that the files are in
the same directory as the XML files or accessible using the path specified in
the XML files. For some API functions, the client also needs access to these
files.

user exit
The name of the user exit used to convert unsupported document formats. For
information on creating user exits, see “Using unsupported document formats”
on page 16.

userexitall
If you specify on, the user exit is used for all document formats, including the
supported document formats.

fmtrecogn
If you specify on, each document is analyzed to determine the appropriate
parser for the document type.

Chapter 6. Administration commands 65

Processing is faster if you switch off automatic format recognition. If you are
not using userexitall, documents are parsed according to the default
document format set by the imorulix command.

Example
imoadmcl -dtd /home/dtd -fmtrecogn off

66 z/OS Text Search: Installing the Text Search Engine

IMOCFGCL - update client profile

Purpose
Use this command to update the client profile. You can also use it to display,
update, or erase a specific client setup.

Syntax
To configure the client communication:
imocfgcl

[-h| -H| -?| -copyright] [-quiet]
[-p]
[-e -s <search service name>]
[-c local -s <search service name>

-i <server instance name>]

[-c tcpip -s <search service name>
-n <port number>
-m <machine name>]

To set up the client in interactive prompt mode:
imocfgcl -p

To delete client access permissions:
imocfgcl -e -s <search service name>

To display the current client setup:
imocfgcl -d

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

local
The clients and the server are on the same machine. The client requests are
handled in one daemon process.

tcpip
Defines the TCP/IP protocol for client/server communication. The server must
also be configured for TCP/IP communication.

search service name
The search service name can be up to 8 characters long. It is used to establish a
connection to the server.

server instance name
A server instance defines a particular set of indexes, local and remote, that
users work with. The name can be up to 8 characters long.

port number
The TCP/IP port address that all clients use when they connect to the search
service. This is the same port number as used for the server configuration.

Chapter 6. Administration commands 67

machine name
For TCP/IP, this is the host name or IP address of the server on which the Text
Search Engine server is installed.

Example
imocfgcl -c tcpip -s SERVER -n 7777 -m MYHOST

68 z/OS Text Search: Installing the Text Search Engine

IMOCRCL - create client profile

Purpose
Use this command to create and configure a client profile. A configuration file is
also created. For further information on the contents of the configuration file, see
“Client configuration file” on page 71.

Syntax
imocrcl

[-h| -H| -?| -copyright] [-quiet]
[-c local -s <search service name>

-i <server instance name>
-r <resource path>]

[-c tcpip -s <search service name>
-r <resource path>
-n <port number>
-m <machine name>]

Parameters
-h, -H, or -?

Help information. If one of these options is specified, all other options are
ignored.

-copyright
Returns the internal build number of the product. Use this number when
reporting problems with the product.

-quiet
Output information is not displayed on the screen.

local
The clients and the server are on the same machine. The client requests are
handled in one daemon process.

tcpip
Defines the TCP/IP protocol for client/server communication.

search service name
The search service name can be up to 8 characters long. Each search service is
associated with one server instance. You can have several search services in
one client profile.

server instance name
A server instance defines a particular set of indexes, local and remote, that
users work with. The name can be up to 8 characters long.

resource path
The directory where the dictionaries are located.

port number
The TCP/IP port address that all clients use when they connect to the search
service. Your system administrator assigns it.

machine name
For TCP/IP, this is the host name or IP address of the server on which the Text
Search Engine server is installed.

Example
imocrcl -c tcpip -s SERVER -r /usr/TextTools/dict -n 7777 -m MYHOST

Chapter 6. Administration commands 69

70 z/OS Text Search: Installing the Text Search Engine

Appendix A. Configuration files

This appendix describes the configuration files. These files are automatically
generated when a server instance is created with the imocrins command or when a
client profile is created with the imocrcl command. On workstation platforms,
these files are generated in code page 819, on z/OS they are generated in code
page 500.

You can edit these files to tune your system, however, ensure that you use the
correct code page when editing the files. The section names and the option names
are case independent. A semicolon is used as a comment delimiter.

Client configuration file
File name IMOCL.INI

Location The directory to which the environment variable IMOCONFIGCL
points.

The updated options become active at the next StartSession function. For further
information on the StartSession function, see the z/OS Text Search: Programming the
Text Search Engine.

Section Option Default value Description

[INSTANCE] IMOWORKCL Points to a working directory
that is used for temporary files.

IMONLPSCL Points to the resource directory.

[BUFFER] BUFFERSEGMENTSIZE 32 000 The size of the block segments,
in bytes, used for buffering. This
is used by EhwGetMatches.

BUFFERSEGMENTCOUNT 3 The maximum number of
segments used before buffers are
swapped to temporary files. A
buffer segment is defined by
BUFFERSEGMENTSIZE.

[DOCUMENTFORMAT] USEREXIT The name of the user exit used to
work with document formats not
listed in imolsdef.h. Specify
either a file name if the user exit
is stored in a directory which is
part of the PATH statement, or a
fully-qualified file name.

For further information on the
user exit for format conversion,
see “Using unsupported
document formats” on page 16.

© Copyright IBM Corp. 1998, 2001 71

Section Option Default value Description

FORMATRECOGNITION TRUE Triggers the format recognition of
the document formats listed in
imolsdef.h.

TRUE: format recognition is on

FALSE: format recognition is off

UseExitForAllFormats FALSE Determines when the user exit
for working with document
formats not listed in imolsdef.h is
called. You must set a value for
USEREXIT.

TRUE: the user exit is always
called. If this value is set,
FORMATRECOGNITION is
ignored.

FALSE: call the user exit for all
document formats above the
value of EHW_USER_FORMATS.

Server configuration file
File name IMOSRV.INI

Location The directory to which the environment variable IMOCONFIGSRV
points + the server instance name. This file exists only once per
server instance.

The updated options become active the next time the server instance is started.

Table 2. Server configuration file options

Section Option Default value Description

[INSTANCE] IMOWORKSRV Points to a working directory
that is used for temporary files.

IMONLPSSRV Points to the resource directory.

[DAEMON] MaxMtEntries 30 The maximum number of
indexes used in parallel at any
one time. Decrease this number if
you are short of resources, such
as semaphores or shared
memories. Available resources
are platform dependent and
therefore the default values are
also platform dependent.

MaxIndexEntries 1000 The maximum number of
indexes used. Decrease this
number if you are short of
resources, such as shared
memories.

[BUFFER] BUFFERSEGMENTSIZE 32 000 The size of the block segments,
in bytes, used for buffering. This
is used by EhwUpdate.

72 z/OS Text Search: Installing the Text Search Engine

Table 2. Server configuration file options (continued)

Section Option Default value Description

BUFFERSEGMENTCOUNT 3 The maximum number of
segments used during the index
update process before buffers are
swapped to temporary files.
Increase this number if your
document collections contain
large documents.

BUFFERSORTSIZE 20 000 000 The size of the buffer, in bytes,
used for sorting temporary work
files

[DOCUMENTFORMAT] USEREXIT The name of the user exit used to
work with document formats not
listed in imolsdef.h. Specify
either a file name if the user exit
is stored in a directory which is
part of the PATH statement, or a
fully-qualified file name.

For further information on the
user exit for format conversion,
see “Using unsupported
document formats” on page 16.

FORMATRECOGNITION TRUE Triggers the format recognition of
the document formats listed in
imolsdef.h.

TRUE: format recognition is on

FALSE: format recognition is off

UseExitForAllFormats FALSE Determines when the user exit
for working with document
formats not listed in imolsdef.h is
called. You must set a value for
USEREXIT.

TRUE: the user exit is always
called. If this value is set,
FORMATRECOGNITION is
ignored.

FALSE: call the user exit for all
document formats above the
value of EHW_USER_FORMATS.

[LINGPREC] For all
indexes with linguistic or
precise as their base type.

UPDATETHRESHOLD 4 000 000 An index update process is split
internally into several update
and reorganization runs. This
value specifies the number of
words to be collected in one
update step.

UPDATESLICE 1 The number of update runs that
take place before an internal
reorganization process starts. An
update run is defined by the
UPDATETHRESHOLD.

Appendix A. Configuration files 73

Table 2. Server configuration file options (continued)

Section Option Default value Description

[NGRAM] For all indexes
with DBCS support.

UPDATETHRESHOLD 10 000 000 Total size, in bytes, of documents
added to an index during one
update run. If the threshold is
exceeded, a reorganization
process is automatically started.

UPDATESLICE 10 000 The maximum number of
documents in a secondary index.
This number is checked after
each update run. If the number
of documents is greater than this
value, a reorganization process is
automatically started.

74 z/OS Text Search: Installing the Text Search Engine

Appendix B. Dictionary files

This appendix lists the supported languages and the corresponding file names
used for the dictionary files (*.dic), stop-word files (*.stw), and abbreviation files
(*.abr). The dictionary files are in binary format and cannot be changed. The
stop-word files and abbreviation files (if they exist) are in flat-file format and can
be changed. If you change any of these files, ensure that you use the correct code
page for the language as shown in Table 3.

Table 3. Dictionary files

Language File name Code page

Host Workstation

Arabic arabic 420 864

Brazilian Portuguese brasil 500 850

Canadian French canadien 500 850

Catalan catalan 500 850

Danish dansk 500 850

Dutch nederlnd 500 850

Finnish suomi 500 850

French francais 500 850

German deutsch 500 850

Hebrew hebrew 424 862

Icelandic islensk 500 850

Italian italiano 500 850

Norwegian norbok 500 850

Norwegian nornyn 500 850

Portuguese portugal 500 850

Russian russian 1025 866

Spanish espana 500 850

Swedish svensk 500 850

Swiss German dschweiz 500 850

Thai thai 838 874

U.K. English uk 500 850

U.S. English us 500 850

© Copyright IBM Corp. 1998, 2001 75

76 z/OS Text Search: Installing the Text Search Engine

Appendix C. Handling errors

The Text Search Engine has different levels of error handling. These levels are:
v Return codes from the API

The API and the command-line utilities that use the API always give a return
code on completion. These return codes are listed in the z/OS Text Search:
Programming the Text Search Engine together with an explanation of the possible
causes of the error and the recommended actions to take in the error situation. If
you need more information on the cause of the error, look in the log file
imodiag.log, which is located in the server instance path.

v Error codes for a group of functions
There are groups of functions for searching, scheduling, updating, and
reorganizing. Status information is maintained for each group. If an error occurs
in one of the groups, the group is locked and is no longer available for use; all
other function groups of that index are still available. To make the functions
available again, you must unlock the function group using the imoctrix
command.
For example, suppose an update operation on an index fails because the process
runs out of disk space. The index is locked for further update operations, but it
is still searchable. In this case, a search operates on all documents that were
present in the index before the failed update operation.
The imostfix command lists the status of the function groups. You can use this
information to help determine the cause of an error. This might lead you to
check the directories where the index files reside for available space or for
correct permissions. (The directories and files must be set to provide read and
write access for the Text Search Engine administrative user.)
After handling the cause of the error (perhaps by resetting the permissions, or
providing more disk space), use the imoctrix command to unlock the locked
function groups. The imoctrix command always re-enables all function groups
simultaneously.
The error codes returned by the function groups are listed in the z/OS Text
Search: Programming the Text Search Engine together with an explanation of the
possible causes of the error and the recommended actions to take in the error
situation. If you need more information on the cause of the error, look in the log
file imodiag.log, which is located in the server instance path.

v Trace
The Text Search Engine also has a trace facility (imotrace) for following the
internal program flow. If an error occurs that you cannot solve by one of the
other methods, you can enable tracing to get more detailed information about
the error situation. For reporting errors to your IBM representative, it is
recommended that you enable the trace facility and re-create the error situation.

© Copyright IBM Corp. 1998, 2001 77

IMOTRACE - enable trace facility

Purpose
Use this command to get detailed information on error situations. The trace facility
records the activity of all active instances on the server. Information about the
program flow is written to an internal buffer. You can dump the contents of the
buffer onto the screen. Use the output from the trace facility when you report
problems or errors to your IBM representative. You can use imotrace on both the
client and the server. By default, the trace facility is not enabled.

Syntax
imotrace

(clr| fmt| off| on|)

Parameters
clr Clears the internal trace buffer.

fmt Formats the trace output onto the screen.

off Turns tracing off.

on Turns tracing on.

Example
imotrace on
imolstix -s smss
...
imotrace fmt > /tmp/trace.out
imotrace off

78 z/OS Text Search: Installing the Text Search Engine

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10505-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2001 79

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
or other countries, or both:
v IBM
v MVS
v OpenEdition
v OS/390
v z/OS

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be trademarks or service marks of
others.

80 z/OS Text Search: Installing the Text Search Engine

Index

A
abbreviation files, list of 75

B
building an index, overview 25

C
character data, rules for 3
clearing index queue 43
client

access permissions, deleting 67
administration commands 64
configuration file 71
overview 1

client profile
creating 69

command 69
updating 67

client/server environment
communication types, overview 2
overview 1

code page
configuration files 3
ngram index, setting 31

commands
imoadmcl 65
imoadmsv 59
imocfgcl 67
imocfgsv 61
imoclrix 30
imocrcl 69
imocrdm 48
imocrix 31
imoctrix 33
imodeldm 50
imodelix 34
imogetdm 51
imolstdm 52
imolstix 35
imomodix 53
imomsgix 36
imoqueue 43
imoreoix 37
imorulix 38
imoss 64
imostaix 40
imostfix 41
imotrace 78
imoupdix 42

communication types, overview 2
configuration file

client 71
code page 3
server 72

configuring
client profile, command 69
server instance, command 63

creating
client profile 69
empty index 31
server instance 63

D
deleting an index 34
dictionary files, list of 75
document administration, commands 42
document format

converting nonsupported 16
list of supported 15
section support 19
specifying rules for 38

document model
administration commands 47
creating 48
deleting 50
displaying 51
listing all 52
overview 19
setting default 53

document models file, contents 20
document types, specifying 26
documents

converting format 16
deleting from index 43
formats supported 15
scheduling for indexing 43

E
error handling 77

F
flat-file documents, section support 20

H
HTML documents, section support 20

I
imoadmcl command 65
imoadmsv command 59
imocfgcl command 67
imocfgsv command 61
IMOCL.INI 71
imoclrix command 30
imocrcl command 69
imocrdm command 48
imocrins command 63
imocrix command 31
imodeldm command 50
imodelix command 34
imogetdm command 51
imolstdm command 52

imolstix command 35
IMOMODEL.INI 19
imomodix command 53
imomsgix command 36
imoqueue command 43
imoreoix command 37
imorulix 38
imosrch command 45
IMOSRV.INI 72
imoss command 64
imostaix command 40
imostfix command 41
imothesc command 55
imothesn command 57
imotrace command 78
imoupdix command 42
index

administration, commands 29
backing up and restoring 27
clearing entries from 30
code page, setting for ngram 31
creating

command 31
overview 26

deleting 34
document model, setting default 53
linguistic index 17
listing all 35
multiple, using 19
ngram index 18
normalized precise index 18
planning 15
precise index 18
reorganization

automatic, configuration
options 27

command 37
reorganization, status of,

command 41
rules, specifying 38
specifying document types 26
status information, displaying 40
updating 42

index files, space required 26
index queue, clearing 43
index types

linguistic index 17
list of 17
ngram index 18
normalized precise index 18
precise index 18

indexing
overview 15
scheduling documents 43
status of, command 41

input data, rules for 3

L
Library Services

index restrictions 15

© Copyright IBM Corp. 1998, 2001 81

Library Services (continued)
overview 16

linguistic index
creating 31
overview 17
space requirements 23

local communication, overview 2

M
messages, listing 36
multiple indexes, using 19

N
ngram index

code page, setting 31
creating 31
overview 18
thesaurus, creating for 57

normalized precise index
creating 31
overview 18

P
performance

indexing time 23
merging indexes 24
retrieval time 24
space requirements 22

precise index
creating 31
overview 18
space requirements 23

Q
queuing documents, command 43

R
reorganizing an index 37
resuming an index 33

S
scheduling

documents for deleting 43
documents for indexing 43
status of, command 41

search
command 45
retrieval time 24
status of, command 41

section support
document models file, contents 20
enabling 19
flat-file documents 20
HTML documents 20
IMOMODEL.INI 19
index rules, specifying 38
XML documents 21

server
administration, commands 57
communication, configuring 61
configuration file 72
configuring

command 63
overview 1
updating configuration 61

server instance
creating and configuring 63
listing document models 52

server instance, administration 13
space requirements, index files 22
stop-word files, list of 75
stop words, definition 15
suspending an index 33

T
TCP/IP communication, overview 2
temporary files, space required 26
thesaurus

creating 55
ngram index, creating 57
sample files 2

tracing errors 78

U
unlocking an index 33
user exit, document format

conversion 16

X
XML documents, section support 21

82 z/OS Text Search: Installing the Text Search Engine

Readers’ Comments — We’d Like to Hear from You

z/OS
Text Search: Installation and Administration
for the Text Search Engine
Version 1.2

Publication No. SH12-6716-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6716-01

SH12-6716-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Str. 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

SH12-6716-01

	Contents
	About this book
	Who should read this book
	Conventions used in this book
	The Text Search Library

	Chapter 1. Introduction
	The Text Search Engine environment
	Client/server communication
	Text Search Engine concepts

	Chapter 2. Installing and customizing the Text Search Engine
	Getting started
	Installing the Text Search Engine
	Moving z/OS Text Search to another directory
	Copying z/OS Text Search

	Customizing the installation
	Finalizing the installation

	Migrating from releases of OS/390 Text Search
	Migrating from OS/390 NetQuestion Version 1.x

	Chapter 3. Starting and stopping a search server
	Chapter 4. Planning your document indexes
	Why documents need to be indexed
	Which types of documents and library systems are supported
	Using unsupported document formats
	Deciding which type of document index to use
	Linguistic index
	Precise index
	Normalized precise index
	Ngram index

	Using multiple indexes
	Enabling section support
	Flat files and HTML documents
	XML documents

	Performance considerations
	Space requirements for indexes
	Time required to index documents
	Retrieval time for a search
	Merging the secondary index with the primary index

	Chapter 5. Building and maintaining indexes
	Building a new index
	Creating the document list
	Creating an index
	Defining the rules for the index
	Populating the index

	Refreshing an index
	Reorganizing indexes
	Querying the status of an index
	Backing up and restoring index files
	Moving an index to another location

	Chapter 6. Administration commands
	Index administration
	IMOCLRIX - clear index
	IMOCRIX - create index
	IMOCTRIX - control index
	IMODELIX - delete index
	IMOLSTIX - list indexes
	IMOMSGIX - display indexing messages
	IMOREOIX - reorganize index
	IMORULIX - maintain indexing rules
	IMOSTAIX - display index status
	IMOSTFIX - display status of index functions
	IMOUPDIX - update index

	Document administration
	IMOQUEUE - queue documents
	IMOSRCH - search for documents

	Document model administration
	IMOCRDM - create document model
	IMODELDM - delete document model
	IMOGETDM - display a document model
	IMOLSTDM - list document models
	IMOMODIX - set default document model

	Thesaurus administration
	IMOTHESC - compile a thesaurus definition file
	IMOTHESN - compile an NGRAM thesaurus definition file

	Server administration
	IMOADMSV - update server settings
	IMOCFGSV - update server configuration
	IMOCRINS - create server instance
	IMOSS - start/stop server instance

	Client administration
	IMOADMCL - update client configuration
	IMOCFGCL - update client profile
	IMOCRCL - create client profile

	Appendix A. Configuration files
	Client configuration file
	Server configuration file

	Appendix B. Dictionary files
	Appendix C. Handling errors
	IMOTRACE - enable trace facility

	Appendix D. Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

